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1     Introduction 

Background 

The fate and transport of explosives through porous media have become of 
greater concern recently, due in part to the increased number of military 
installation closings.  Many of these installations were involved in the manu- 
facture and packing of munitions. As a result of these operations, subsurface 
contamination by explosives poses a potential threat to groundwater resources 
at many of these munition plants (Spaulding and Fulton 1988; Pugh 1982). 
Containment and remediation efforts are under way at many of these sites. 

At many military installations, 2,3,5-trinitro-l,3,5-triazine (RDX) and 
oxyhydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) subsurface contamina- 
tion is present in addition to contamination by 2,4,6-trinitrotoluene (TNT). 
Information on RDX and HMX subsurface transport is more limited than 
information on TNT subsurface transport and is inadequate for accurate trans- 
port modeling.  Because transport models are used for planning containment 
and remediation measures and evaluation of natural attenuation, additional 
research concerning subsurface transport processes potentially affecting RDX 
and HMX is needed. 

Process Overview 

Many processes affect the fate and transport of RDX and HMX in soils 
and groundwater (McGrath 1995). These processes include, but are not 
limited to, convection, hydrodynamic dispersion, biodegradation, abiotic 
transformations, soil sorption, dissolution, and diffusion. The majority of the 
available literature on RDX and HMX has focused on sorption and irrevers- 
ible disappearance of these compounds. 

RDX sorption 

The sorption of RDX on soils has been studied by several researchers 
(Sikka et al. 1980; Leggett 1985; Ainsworth et al. 1993; Selim and Iskandar 
1994; Myers et al. in preparation).  Each of these researchers found that RDX 
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was extremely mobile and could be described well using a linear equilibrium 
approach.  Leggett (1985) noted that sorption values for RDX on bentonite 
were similar to sorption values for RDX on natural sediments, suggesting that 
the clay content of natural soils and sediments is important to the sorption of 
RDX.  Reported linear equilibrium distribution coefficients (Kj) for RDX 
range from < 1 to 7.8 L/kg (Townsend and Myers 1996). 

HMX sorption 

The information on HMX sorption is more limited than the information on 
RDX sorption. The available information on HMX sorption suggests that 
HMX is mobile, although not as mobile as RDX. Nonlinear or nonequilib- 
rium HMX sorption (breakthrough curve tailing) has been observed (Myers 
et al. in preparation; Pennington et al. 1995). Linear equilibrium distribution 
coefficients (IQ) for HMX as high as 13 L/kg have been reported (Townsend 
and Myers 1996). 

RDX disappearance 

Disappearance of RDX from soils and sediments has been noted by several 
investigators (Sikka et al. 1980; McCormick, Cornell, and Kaplan 1981; 
Pennington et al. 1995; Myers et al. in preparation).  Each of these investiga- 
tors suggested that RDX disappearance may be attributed to biological trans- 
formation, that is, biodegradation.  However, with the exception of 
McCormick, Cornell, and Kaplan (1981), RDX transformation products were 
not analyzed. In the absence of measured transformation products, mass 
balance calculations can be misinterpreted since discrepancies in RDX mass 
cannot be unequivocally attributed to transformation. 

An anaerobic biodegradation scheme (Figure 1) has been proposed 
(McCormick, Cornell, and Kaplan 1981). According to this scheme, RDX is 
biodegraded via successive reduction of nitro groups. After several steps of 
reduction and ring cleavage, methanol, formaldehyde, and hydrazines are 
produced.  The work of McCormick, Cornell, and Kaplan (1981) suggests 
products that have not been analyzed in laboratory transport experiments are 
also produced. 

Sikka et al. (1980) monitored the concentrations of RDX in water samples 
over time.  The results showed that little or no loss of RDX occurred in water 
samples alone or in water samples in the presence of yeast extract.  In samples 
amended with 1 percent sediment, significant loss of RDX, which could not 
be accounted for as adsorption to the sediment, was observed. 

An elution curve for a field-contaminated soil (Pennington et al. 1995) 
suggested RDX disappearance. An RDX first-order disappearance rate con- 
stant of approximately 0.1 hr1 was obtained from the elution curve. 
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Figure 1.     RDX transformation pathway scheme (from McGrath 1995, after McCormick, Cornell, 
and Kaplan 1981) 

Myers et al. (in preparation) conducted aerobic RDX batch experiments 
with one of the soils used in this study (Yokena clay) under both biotic and 
abiotic conditions.  Differences in RDX recoveries between the biotic (63 per- 
cent) and the abiotic (91 percent) tests suggested significant amounts of RDX 
biodegradation.  Myers et al. (in preparation) also conducted column studies 
with the same soils used in this study.  Mass balance analysis indicated 
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significant RDX disappearance in the silt and clay and no RDX disappearance 
in the sand. First-order disappearance rate constants for the silt and clay were 
6 x 10"3 and 14 x 10"3 hr1, respectively. 

HMX disappearance 

Less information is available on HMX disappearance than on RDX disap- 
pearance.  There is evidence that disappearance of HMX in soils occurs. 
Pennington et al. (1995) observed HMX disappearance in an experiment with 
a field-contaminated soil. An HMX first-order disappearance rate constant of 
0.09 hr"1 was obtained from the experiment.  Myers et al. (in preparation) 
performed laboratory column experiments with HMX using the same soils 
used in this study. Mass balance analysis indicated that HMX, like RDX, 
underwent disappearance in the silt and clay, but not in the sand.  First- 
order disappearance rate constants for the silt and clay were 32 x 10"3 and 
4 x 10~3 hr"1, respectively. 

Objectives 

The objectives of this study were as follows: 

a. Use thin disk soil columns to obtain RDX and HMX breakthrough 
curves for three soils of varying grain-size distributions. 

b. Determine RDX and HMX sorption and disappearance parameters 
from the breakthrough curves. 

c. Evaluate nonequilibrium effects using a pause in flow technique. 
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2    Materials and Methods 

Soils 

Three soils were used in this study:  Tunica silt from Vicksburg, MS, 
Yokena clay from Vicksburg, MS, and Ottawa sand obtained from U.S. Silica 
Company, Ottawa, IL. The Tunica silt and Yokena clay soils were previously 
described by Pennington and Patrick (1990).  Soil properties are listed in 
Table 1, and particle size distributions are shown in Figures 2, 3, and 4. 

Table 1 
Soil Properties1 

Properties 

Soils 

Tunica Silt Yokena Clay Ottawa Sand 

Percent sand 4 2 93 

Percent silt 82 36 7 

Percent clay 14 62 0 

pH 4.54 5.71 * * 

EC2 0.72 2.45 * * 

FOC3 0.006 0.024 * * 

CEC4 17.2 124.9 * » 

Fe5 252 1,252 * * 

Al6 196 160 # * 

Mn7 152 59.6 # # 

Ca8 1.10 0.954 * * 

1 Adapted from Pennington and Patrick (1990). 
2 Electrical conductivity (dS m"1). 
3 Fraction organic carbon. 
4 Cation exchange capacity (cmolc kg"1). 
5 Oxalate extractable metals (mg kg"1). 
Note: ** = not measured. 
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Thin Disks 

Experiments were conducted in stainless steel columns (Figure 5) 0.32 cm 
in length, with a 4.45-cm inside diameter.  Stainless steel porous plates 
(0.64 cm thick, 100 /on nominal pore diameter, Mott Metallurgical, Farming- 
ton, CT) were placed on the inlet and outlet sides of the soil layer.  These 
plates were used to distribute flow across the soil surface. Rubber O-rings 
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Figure 5.     Thin disk schematic and experimental apparatus 
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(Mississippi Rubber Specialty Company, Vicksburg, MS) were used to seal 
the end caps.  The end caps were connected to stainless steel inlet and outlet 
tubing. 

Disk Loading 

In large length-to-diameter columns, the usual column loading procedure is 
to pack the soil in increments and scarify the surface to minimize bedding 
planes.  Packing was impractical for thin disk columns.  Therefore, another 
loading procedure was developed. 

Soils were placed in the columns as slurries, and water was allowed to 
drain by gravity.  To keep soil particles from being trapped in the column 
threads during this process, an insert, which was a 6.5-cm-long polyvinyl 
chloride pipe with exterior threads, was designed to protect the column 
threads.  Soil loading was a trial and error process, and the slurry density had 
to be adjusted for each soil. 

Tunica silt 

Using measured specific gravity, water content, and an assumed porosity 
(0.65), the mass of Tunica silt needed for a 0.32-cm soil layer was estimated 
at 4.55 g.  This amount of soil was mixed with distilled-deionized (DDI) 
water in a clean, oven-dry beaker to give a 6:1 mass of water to mass of soil 
slurry.  The column was clamped to a stand and leveled.  After the thread 
protection insert was in place, the slurry was transferred to the column using a 
glass stirring rod.  The beaker was rinsed thoroughly so as to transfer as 
much of the soil as possible.  The water was allowed to drain under gravity, 
which took about 20 min.  The entire loading process had to be repeated 
several times until a satisfactory layer was produced.  Upon producing a 
satisfactory layer, a porous plate was placed on top of the soil layer and an 
end cap was screwed into the disk, holding the porous plate firmly against the 
soil layer.  Soil left on the inside of the column insert was rinsed into the 
beaker used for the slurry transfer.  This beaker was then placed in an oven at 
110 °C and dried until all the water was evaporated.  It was then weighed on 
an analytical balance.  The soil mass in the column was calculated by 
difference. 

Yokena clay 

The mass of Yokena clay needed to give a 0.32-cm soil layer was esti- 
mated using specific gravity, water content, and an assumed porosity (0.65). 
This was calculated to be 4.88 g.  On the first loading attempt, an 8:1 water 
to soil ratio was used, and the slurry was transferred to the column using the 
same procedure as with the Tunica silt soil.  The slurry was allowed to drain 
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under gravity, which took approximately 75 min.  Upon inspection, it was 
noted that the clay apparently had swelled, making the soil layer thicker than 
the desired 0.32 cm.  The same procedure was followed in a second loading 
attempt.  The water took longer to drain, but the results were similar to the 
first loading attempt.  Loading was also attempted using a slight vacuum to 
remove water.  This procedure produced a very uneven surface on the soil 
layer. 

Because of the swelling, various amounts of soil were used to get a 
0.32-cm layer.  After several attempts, it was determined that approximately 
3.8 g of soil were needed.  However, a smooth, even layer was still not 
achieved. Therefore, using about 3.8 g of soil, the water to soil ratio was 
changed from 8:1 to approximately 10:1. The slurry was placed on a stir 
plate and mixed with a magnetic stir bar. This allowed the clay to swell 
before addition to the column.  The slurry was stirred for approximately 4 hr 
and then transferred to the column as before. A smooth, even layer was 
obtained using the 10:1 water to Yokena clay, 4 hr of stirring, and gravity 
drainage. 

Ottawa sand 

An estimated mass of 9.25 g of Ottawa sand needed to produce a 0.32-cm 
layer was calculated using its specific gravity, water content, and an assumed 
porosity (0.30). With the regular slurry transfer procedure, the sand settled 
too fast, resulting in an uneven layer. 

Because of the high settling velocity, a different loading procedure was 
developed for sand.  The column outlet valve was shut off, and water was 
added to the column.  The sand was then sprinkled into the standing water. 
After addition of the sand, the valve was opened, and the water was allowed 
to drain.  The layer produced was smooth and even, but it was more than 
0.32 cm thick.  The mass of soil added was reduced to 8.0 g, and a smooth, 
even layer at the desired thickness was obtained. 

Contaminated Feed Solution Preparation 

Contaminated feed solution was prepared using field-contaminated soil 
from the Naval Surface Warfare Center in Crane, IN.  The soil (labeled Crane 
Sifter-Conveyor) contained a RDX concentration of approximately 
11,200 mg/kg and a HMX concentration of approximately 1,250 mg/kg 
(Pennington et al. 1995).  Two batches were prepared during the project. 

Crane Sifter-Conveyor soil (250 g) and DDI water (500 mL) were placed 
in a 1,000-mL, high-density polyethylene bottle.  Four soil-water suspensions 
were prepared. The bottles were taped shut, placed in a tumbler, and tumbled 
for approximately 18 hr at 25 rpm. 
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After tumbling, the soil-water suspensions were centrifuged at 4,000 rpm 
in a bucket centrifuge (Model PR-7000, International Equipment Company, 
Needham Heights, MA) for 30 min.  Supernatants were decanted and centri- 
fuged again at 9,000 rpm in a bench centrifuge (Model SS-3 automatic, Sor- 
vall, Inc., Newtown, CT) for 30 min.  Finally, the supernatant was filtered 
through a 0.45-^m membrane filter (Type HA, Millipore Corporation, Bed- 
ford, MA). 

Filtrates were combined into two amber-colored glass jars.  A 5-mL 
aliquot was pipetted from each jar and preserved with an equal amount of 
acetonitrile for a reference standard.  Both the preserved samples and the 
contaminated feed solution were stored at approximately 4 °C.  Contaminated 
feed solution samples were preserved for analysis periodically throughout the 
course of the experiments (Appendix A). 

Thin Disk Column Tests 

Breakthrough curves 

DDI water was pumped (upflow mode) through three soil columns (Tunica 
silt, Yokena clay, and Ottawa sand) using constant-volume metering pumps 
(Model QG6-2-SSY, Fluid Metering Inc., Oyster Bay, NY) until target flows 
were obtained (approximately 1.8 to 2.3 mL/hr).  When these flows were 
achieved, the pumps were stopped, and DDI water was replaced with contami- 
nated feed solution.  The pumps were restarted with the contaminated feed 
solution which was pumped through the disks for a number of pore volumes 
(see following paragraph), defined as step inputs.  Column operating parame- 
ters and average feed solution concentrations are shown in Tables 2 and 3, 
respectively. 

Table 2 
Column Operating Parameters 

Column V1, cm/s pz, g/cm3 n3 SG* 

Tunica silt 4.96 x 10"5 0.888 0.65 2.54 

Yokena clay 5.61  x 10s 0.719 0.73 2.67 

Ottawa sand 9.44 x 10~5 1.610 0.40 2.68 

1 Average pore water velocity. 
2 Bulk density. 
3 Porosity. 
4 Specific gravity of soil. 

12 

Contaminated feed solution was pumped through the Tunica silt and 
Yokena clay columns for 160 and 211 pore volumes, respectively (284 and 
329 hr, respectively).  Contaminated feed solution was pumped through the 
Ottawa sand column for 51 pore volumes (48 hr). 
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Table 3 
Average Feed Solution Concentrations (mg/L) 

Parameter1 Tunica Silt Yokena Clay Ottawa Sand 

RDX 33.6 33.6 30.9 

HMX 2.47 2.47 2.18 

TNT 63.2 63.2 58.8 

TNB 0.27 0.27 0.184 

DNB < 0.02 < 0.02 < 0.02 

TETRYL < 0.05 < 0.05 < 0.05 

4A-DNT 0.145 0.145 0.110 

2A-DNT 2.23 2.23 1.97 

2,6-DNT < 0.020 < 0.020 < 0.020 

2,4-DNT 0.028 0.028 0.026 

AZOXY < 0.100 < 0.100 < 0.100 

3,5-DNA 0.054 0.054 0.051 

2,6-DANT < 0.100 < 0.100 < 0.100 

2,4-DANT < 0.200 < 0.200 < 0.200 

1  See Appendix B for full chemical names. 

After the step inputs of contaminated feed solution were applied to the 
columns, the pumps were stopped, and contaminated feed solution was 
replaced with DDI water.  The pumps were restarted with DDI water which 
was pumped through the Tunica silt and Yokena clay columns for 100 hr (56 
and 66 pore volumes), respectively.  DDI water was pumped through the 
Ottawa sand column for 68 hr (75 pore volumes).  The pumps were stopped, 
and the columns were sealed after the addition of DDI water. 

All column tests were performed at room temperature (18 to 24 °C). 

Pause in flow 

After allowing each of the sealed soil columns to sit undisturbed for 
8 weeks, DDI water was again pumped through the columns for an additional 
24 hr to investigate rate-limited desorption.  Afterwards, the pumps were 
turned off, and the columns were disassembled.  The entire soil layer was 
taken from each soil column for chemical analysis (Jenkins, Miyares, and 
Walsh 1988). 
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Sampling procedure 

During the thin disk column tests, samples were collected using fraction 
collectors (Model UFC, Eldex Laboratories, Inc., Napa, CA).  Samples were 
collected hourly during the majority of the experiment.  A portion of each 
sample (1.5 mL) was spiked with an equal volume of acetonitrile for 
preservation. 

Chemical Analysis 

Samples were analyzed for 2,3,5-trinitro-l,3,5-triazine (RDX) and 
oxyhydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) on two independent 
HPLC systems using the dual column confirmation method developed by 
Jenkins, Miyares, and Walsh (1988). The first system consisted of a 600E 
system controller, a 712 Wisp Auto Injector, and a 486 Tunable Absorbance 
Detector (Millipore/Waters Chromatography Division, Milford, MA).  The 
column was an HPLC-18 (Supelco 25 cm x 4.6 mm) column eluted with 
1:1 methanol/water at 1.2 mL/min.  The second HPLC system consisted of an 
HPLC Module I (Millipore/Waters Chromatography Division, Milford, MA). 
The column was an HPLC-CN (Supelco 25 cm x 4.6 mm) column eluted 
with 1:1 methanol/water at 1.2 mL/min. 

Chloride Tracer 

A 500-mg/L as Cl" solution was pumped through an empty column until 
chloride concentrations reached the initial concentration. Because sample 
volumes were smaller than that needed for analysis with a dip-type chloride 
ion probe, chloride concentrations were indirectly measured using an in-line 
conductivity electrode (Mfr. #018010, Orion Research, Inc., Boston, MA) 
which was attached at the end of the outlet tubing. Conductivity readings 
were taken using a conductivity meter (Model 35, Yellow Springs Instrument 
Co., Inc., Yellow Springs, OH).  The conductivity curve was used to estimate 
the effective hydraulic residence time of the apparatus without soil, which is 
needed for modeling (see section on Complete-mix Analytical Model in 
Chapter 3). 

Treatment of Observed Data 

It is useful to normalize soil column data by dividing the observed effluent 
concentrations by the influent concentration and to convert time to the number 
of pore volumes eluted.  To do the latter, the following relationship is used: 

14 
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T =Ut_ (1) 

L 

where 

T = pore volumes eluted 

L = column length, cm 

u = average pore water velocity, cm/s 

t = time, s 

15 
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3    Results and Discussion 

Breakthrough Curves (BTCs) 

RDX 

The normalized Tunica silt RDX BTC (Figure 6) shows that RDX concen- 
trations reached a steady state after about 40 pore volumes were eluted. 
Steady-state concentrations were about 105 percent of the initial concentration. 
The BTC was approximately symmetrical with minimal scattering of data. 
The washout portion of the BTC shows that RDX concentrations returned to 
near the detection limit (0.020 mg/L) after about 40 pore volumes were 
eluted.  Mass balance (Table 4) indicated that the RDX mass introduced to 
Tunica silt was completely recovered in the effluent.  The approximate 
symmetry of the BTC and the total elution of sorbed RDX indicate a 
reversible, linear sorption process (Brusseau and Rao 1989). 

The normalized Yokena clay RDX BTC (Figure 6) shows that RDX con- 
centrations reached a steady state after about 20 pore volumes were eluted, 
and steady-state concentrations were about 102 percent of the intitial concen- 
tration. The BTC showed minimal scattering of data.  The washout portion of 
the BTC showed that RDX concentrations decreased to near the detection limit 
after about 40 pore volumes were eluted. Mass balance (Table 4) indicated 
that virtually all of the RDX mass introduced to Yokena clay was recovered in 
the effluent, although trace amounts of RDX remained in the soil after com- 
pletion of the experiment.  Since the rising and falling limbs of the BTC were 
not symmetrical, a nonequilibrium process or nonlinear sorption affected RDX 
transport in Yokena clay. 

The normalized Ottawa sand RDX BTC (Figure 6) shows that RDX con- 
centrations reached a steady state after about 50 pore volumes were elüted, 
and steady-state concentrations were about 103 percent of the initial concentra- 
tion.  The BTC was symmetrical and showed virtually no data scattering. 
Mass balance (Table 4) indicated that the RDX mass introduced to Ottawa 
sand was completely recovered in the effluent.  The symmetry of the BTC and 
the total elution of sorbed RDX indicate a reversible, linear sorption process. 
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Figure 6.     Normalized RDX breakthrough curves 

HMX 

The normalized Tunica silt HMX BTC (Figure 7) was similar to the 
Tunica silt RDX BTC.  HMX concentrations reached a steady state after about 
40 pore volumes were eluted, and steady-state concentrations were about 
105 percent of the initial concentration.  Mass balance (Table 4) indicated that 
the HMX mass introduced to Tunica silt was completely recovered in the 
effluent.  The washout portion of the BTC showed a return of HMX concen- 
trations to below the detection limit (0.020 mg/L) after approximately 
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Table 4 
Mass Balances for RDX and HMX 

Column Parameter Mass in, mg Mass out, mg 
Residual 
Mass, mg 

Mass Balance 
percent 

Tunica 
silt 

RDX 17.30 18.16 0 105.0 

HMX 1.27 1.29 0 101.6 

Yokena 
clay 

RDX 25.31 25.80 0.01 102.0 

HMX 1.86 2.00 0.05 110.2 

Ottawa 
sand 

RDX 3.13 3.21 0 102.6 

HMX 0.221 0.232 0 105.0 

50 pore volumes were eluted. The approximate symmetry of the BTC and the 
total elution of HMX indicate a reversible, linear sorption process. 

The normalized Yokena clay HMX BTC (Figure 7) was similar to the 
Yokena clay RDX BTC.  HMX concentrations reached a steady state after 
about 20 pore volumes were eluted, and steady-state concentrations were 
about 110 percent of the initial concentration.  The washout portion of the 
BTC showed that HMX concentrations returned to below the detection limit 
after about 70 pore volumes were eluted.  Mass balance (Table 4) indicated 
that virtually all of the HMX mass introduced to Yokena clay was recovered 
in the effluent, although trace amounts of HMX remained in the soil after 
completion of the experiment.  Since the rising and falling limbs of the BTC 
were not symmetrical, a nonequilibrium process or nonlinear sorption affected 
HMX transport in Yokena clay. 

The normalized Ottawa sand HMX BTC (Figure 7) was nearly identical to 
the Ottawa sand RDX BTC.  The Ottawa sand HMX required about 50 pore 
volumes of elution to reach a steady state at about 105 percent of the initial 
concentration and required about 50 pore volumes of washout for HMX con- 
centrations to return to below the detection limit. Mass balance (Table 4) 
indicated that the HMX mass introduced to Ottawa sand was completely 
recovered in the effluent. The symmetry of the BTC and the total elution of 
sorbed HMX indicate a reversible, linear sorption process. 

Implications of BTCs 

RDX and HMX BTCs showed consistent trends with minimal scattering of 
data.  Each BTC reached a steady-state concentration greater than the influent 
RDX and HMX concentrations, indicating a consistent experimental error of 
uncertain origin.  Total recovery of RDX and HMX mass, essentially all of 
which was recovered in the effluent, showed that disappearance of RDX and 
HMX was minimal.  In contrast, Myers et al. (in preparation) obtained RDX 
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Figure 7.     Normalized HMX breakthrough curves 

mass balances of 67, 62, and 108 percent for Tunica silt, Yokena clay, and 
Ottawa sand, respectively, and HMX mass balances of 97, 55, and 109 per- 
cent for Tunica silt, Yokena clay, and Ottawa sand, respectively.  The soil 
columns used by Myers et al. (in preparation) were longer (15.2 cm) than the 
ones used here (0.32 cm).  The longer columns used by Myers et al. (in 
preparation) were probably more anaerobic than the columns used here, sug- 
gesting that RDX and HMX disappearance is dependent on redox conditions. 
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RDX and HMX BTCs in the Yokena clay were somewhat asymmetrical, 
indicating the presence of a nonequilibrium process or nonlinear sorption. 
Nonequilibrium behavior can be attributed to diffusive mass-transfer resis- 
tances (transfer to and from immobile water regions) and rate-limited sorption 
reactions.  Sorption isotherm nonlinearity and sorption-desorption nonsingular- 
ity can also cause BTCs to appear as if nonequilibrium processes were opera- 
tive (Brusseau et al. 1989).  However, as shown by the pause in flow data 
discussed in the next section, the Yokena clay RDX and HMX BTC asymme- 
tries are due to diffusive mass transfer resistance to and from immobile water 
regions. 

Pause in Flow 

The effects of nonequilibrium processes on BTCs include early break- 
through, BTC tailing, and, as mentioned in the preceding section, BTC asym- 
metry.  If nonequilibrium effects are slight, column experiments may not be 
able to discern the presence of these effects. An interruption in flow during 
an otherwise continuous flow experiment tends to magnify nonequilibrium 
effects and can be used to investigate nonequilibrium processes (Brusseau 
et al. 1989). 

A pause in flow may be incorporated into the study on the frontal portion 
of the BTC or on the distal portion of the BTC (during washout).  A pause in 
flow on the frontal portion of the BTC will show a decrease in concentration 
during the flow pause if a nonequilibrium process is present. A pause in flow 
on the washout portion of the BTC will show an increase in concentration 
during the flow pause if a nonequilibrium process is present. In either case, 
concentrations will remain constant during the flow pause if equilibrium con- 
ditions are predominate. 

In the present experiment, flow to each column was stopped during wash- 
out, and the columns were sealed for 8 weeks.  After this pause in flow, 
washout was restarted. 

RDX 

In Tunica silt, normalized RDX concentrations were approximately 0.003 
immediately before the flow pause (Figure 8).  When flow was restarted, 
RDX concentrations increased slightly and then began to decrease with con- 
tinued flow.  In Yokena clay, normalized RDX concentrations were approxi- 
mately 0.0015 immediately before the flow pause (Figure 8).  When flow was 
restarted, normalized RDX concentrations increased to approximately 0.025, 
and then decreased with continued flow. In the Ottawa sand, RDX concentra- 
tions were below detection limits both before and after the flow pause 
(Figure 8). 
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Figure 8.     Normalized RDX breakthrough curves describing flow pause 

HMX 

In Tunica silt, normalized HMX concentrations were approximately 0.005 
immediately before the flow pause (Figure 9).  When flow was restarted, 
normalized HMX concentrations increased to approximately 0.0065.  With 
continued flow, HMX concentrations decreased to below detection limit.  In 
Yokena clay, HMX concentrations were below detection limit immediately 
before the flow pause and increased to approximately 0.036 when flow was 
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Figure 9.     Normalized HMX breakthrough curves describing flow pause 

restarted (Figure 9). HMX concentrations then decreased with continued 
flow. Ottawa sand HMX concentrations were below detection limit both 
before and after the pause in flow (Figure 9). 

Implications of flow pause 

The flow pause data is evidence that RDX in Yokena clay and HMX in 
Yokena clay and Tunica silt were affected by a nonequilibrium process. 
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Increases in HMX concentrations during the flow pause were somewhat higher 
than increases in RDX concentrations during the flow pause, suggesting that 
nonequilibrium processes may be more important for HMX than for RDX. 
Nonequilibrium effects were more pronounced in Yokena clay than in Tunica 
silt.  Evidence of HMX nonequilibrium (i.e., BTC tailing) has been observed 
by other researchers (Pennington et al. 1995; Myers et al. in preparation). 
Evidence of RDX nonequilibrium in the literature is generally lacking. 

Diffusive mass transfer with immobile water regions is probably the cause 
of nonequilibrium effects observed in these data, although a rate-limited Sorp- 
tion reaction (i.e., chemical nonequilibrium) cannot be completely ruled out. 
The immobile water concept has been employed by numerous researchers to 
explain nonequilibrium effects observed in the transport of contaminants.  For 
instance, BTC tailing of 2,4,5-trichlorophenoxyacetic acid in unsaturated soil 
columns was attributed to diffusion through immobile water regions (van 
Genuchten, Wierenga, and O'Connor 1977). The nonequilibrium effects 
observed for transport of chloride, bromide, carbon tetrachloride, tetrachlore- 
thylene, bromoform, o-dichlorobenzene, and hexachloroethane in a saturated 
aquifer was attributed to diffusive exchange with immobile water regions 
(Goltz and Roberts 1986).  Diffusion through immobile water regions also 
affected transport of trichloroethene, bromoform, and chloride in sandy loam 
soil columns (Hutzier et al. 1986). 

Complete-mix Analytical Model 

A complete-mix model (Townsend, Myers, and Adrian 1995) developed 
for thin disk breakthrough curves was used to obtain RDX and HMX transport 
parameters.  The model is similar to one derived by Skopp and McCallister 
(1986).  In a complete-mix model, hydrodynamic dispersion is neglected.  The 
concentration inside the soil layer is assumed to be equal to the concentration 
exiting the soil layer.  The model of Townsend, Myers, and Adrian (1995) 
includes linear equilibrium sorption and first-order reaction. 

From conservation of mass (Equation 2) and a linear sorption isotherm 
(Equation 3), Equation 4 is derived for the initial condition C(0) = 0. 

QC0 - QC - ixnVC = nV^£ + Pvf| (2) 

5 = Kfi <3> 
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1 + djjfin 
1-exp 

n + pK, 
(4) 

where 

C = effluent solute concentration, mg/L 

C0 = influent solute concentration, mg/L 

6H = hydraulic residence time, hr 

H = transformation rate constant, hr"1 

n = porosity 

p = bulk density, kg/L 

Kd — distribution coefficient, L/kg 

Equation 4 is the basic equation describing reactive, sorptive contaminant 
transport through a complete-mix soil system.  This equation has several 
practical limitations.  For instance, difficulties arise in taking measurements 
directly at the soil layer boundary.  In general, columns have an inlet and an 
outlet associated with them, which are usually not part of the main model. 
The solute must first travel through the inlet portion of the column before 
coming into contact with the soil layer and, upon leaving the soil layer, must 
travel through an outlet before being collected for analysis. In traditional 
columns, the inlet and outlet travel time is usually much smaller than the 
residence time in the soil and is often neglected. With thin disk columns, the 
inlet and outlet residence times are significant and therefore must be 
considered. 

To determine the total inlet-outlet (inlet plus outlet) residence time (?„), a 
chloride tracer study was performed on a blank column.  It was assumed that 
both the inlet and outlet could be modeled as plug flow.  Inlet-outlet residence 
time (ro) was measured with a tracer study, and the model was modified to 
account for this travel time as follows: 

C = 
1 + 6Hfi.n 

1 - exp 
0„ 

fxn 

n + pK. «-0 
(5) 

where 

t„ = inlet-outlet residence time, hr 
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Equation 5 describes solute travel through the complete thin disk apparatus 
during the step input of the feed solution. 

After the end of the feed solution step input, DDI water was pumped 
through to wash the disk out.  Changing the conditions at the inlet to C = 0 
for t > ?! yields: 

Cexp 

1 • 
+ fin 

»H (t - " *i> 
n + P*d\ 

(6) 

where 

Cn = Effluent concentration at time tx 

?i = time at the end of the step input plus t 

Parameter Estimation 

For the purpose of fitting Equations 5 and 6 to the BTCs, the initial RDX 
and HMX concentrations were assumed to be the mean of the steady-state 
concentrations measured in the column effluents rather than the RDX and 
HMX concentrations measured in the feed solutions.  Since complete recovery 
of RDX and HMX was observed for each column, disappearance rate con- 
stants were not applicable to these data.  Therefore, only linear equilibrium 
distribution coefficients (Kd) were obtained by fitting Equations 5 and 6 to the 
adjusted BTCs (Table 5). Good fits were obtained for each column for RDX 
(Figure 10) and HMX (Figure 11). 

Table 5 
Fitted Disappearance and Sorption Parameters for RDX and HMX 

Column Parameter n\ hr"1 Kd
2, L/kg 

Tunica silt RDX 0 2.5 

HMX 0 3.6 

Yokena clay RDX 0 5.7 

HMX 0 8.5 

Ottawa sand RDX 0 1.35 

HMX 0 1.45 

1 First-order disappearance rate constant. 
2 Linear equilibrium distribution coefficient. 
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Figure 10.   Normalized observed and fitted RDX breakthrough curves 

RDX 

The Tunica silt RDX BTC was described well by the model (Figure 10). 
The Yokena clay RDX BTC was described reasonably well by the model 
(Figure 10), although the observed data reached steady state slightly before 
the model prediction.  The Ottawa sand RDX BTC was also described reason- 
ably well by the model (Figure 10), although the observed BTC showed 
slightly later breakthrough than the model predicted.  Linear equilibrium 
distribution coefficients (Kd) for RDX were 2.5, 5.7, and 1.35 L/kg for the 
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Figure 11.   Normalized observed and fitted HMX breakthrough curves 

Tunica silt, Yokena clay, and Ottawa sand, respectively. These coefficients 
are in good agreement with those reported in previous works (Townsend and 
Myers 1996, McGrath 1995). 

HMX 

The Tunica silt HMX BTC was described well by the model, although 
there was more scatter of data in the Tunica silt HMX BTC than in the Tunica 
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silt RDX BTC.  The Yokena clay HMX BTC showed slightly earlier break- 
through than the model predicted but was otherwise described well.  The 
Ottawa sand HMX BTC, like the Ottawa sand RDX BTC, showed slightly 
later breakthrough than the model predicted but was otherwise described well. 
Unlike earlier studies (Pennington et al. 1995; Myers et al. in preparation), no 
HMX BTC tailing was observed for any of the soils.  Linear equilibrium 
distribution coefficients (Kd) for HMX were 3.6, 8.5, and 1.45 L/kg for the 
Tunica silt, Yokena clay, and Ottawa sand, respectively.  These coefficients 
are in good agreement with those reported in previous works (Townsend and 
Myers 1996; McGrath 1995). 
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4    Conclusions and 
Recommendations 

Conclusions 

The thin disk soil columns provided well-behaved RDX and HMX break- 
through curves that could be simulated using a complete-mix model with 
linear equilibrium sorption.  Good mass balances were obtained (101 to 
110 percent).  Agreement between observed and model breakthrough curves 
suggests that linear equilibrium sorption in transport models for RDX and 
HMX will capture the main effects of this process, even at high solution 
concentrations, for the conditions and soils investigated.  However, some 
degree of nonequilibrium may affect both RDX and HMX, as evidenced by 
the flow pause. 

HMX tended to sorb more strongly than RDX in all three soils. This 
agrees with earlier works (Leggett 1985; Myers et al. in preparation). 

Neither RDX nor HMX disappearance was observed in this study. The 
lack of observed RDX and HMX disappearance may be due to aerobic soil 
conditions in the thin disk columns that preclude reductive transformations. 

Recommendations 

Many questions regarding RDX and HMX transport in soils remain to be 
answered. The following aspects of RDX and HMX transport in the subsur- 
face must be addressed: 

a.   It should not be assumed that RDX and HMX transformations are 
inoperative, especially under reducing conditions. Chemical analytical 
procedures for measuring RDX and HMX transformation products 
should befurther developed and future experiments should include 
ananalysis for these products. 
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b. The influence of redox conditions on RDX and HMX disappearance 
rates and pathways should be studied systematically before RDX and 
HMX migration through soils can be fully understood. 

c. Column experiments over a wide range of pore water velocities are 
needed to provide information on film effects, mobile-immobile water 
diffusion limitations, other mass transfer limitations, and the general 
applicability of linear equilibrium models for RDX and HMX. 

d. Column experiments incorporating a pause in flow, along with tracer 
experiments incorporating a similar pause in flow, may be used to 
further investigate nonequilibrium processes for RDX and HMX. 
These types of experiments may be able to distinguish between physi- 
cal and chemical nonequilibrium. 
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Appendix B 
Chemical Abbreviations 

RDX: 2,3,5-trinitro-l,3,5-triazine 

HMX:  Oxyhydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine 

TNT:  2,4,6-trinitrotoluene 

DNB:   1,3-dinitrobenzene 

TNB:   1,3,5-trinitrobenzene 

4A-DNT: 4-amino-2,6-dinitrotoluene 

2A-DNT:  2-amino-4,6-dinitrotoluene 

2,6-DNT:  2,6-dinitrotoluene 

2,4-DNT:  2,4-dinitrotoluene 

3,5-DNA:  3,5-dinitroaniline 

2,6-DANT:  2,6-diamino-4-nitrotoluene 

2,4-DANT:  2,4-diamino-6-nitrotoluene 

AZOXY:  Composite of 4,2',6,6'-tetranitro-2,4'-azoxytoluene, 2,2',6,6'- 
tetranitro-4,4'-azoxytoluene, and 4,4',6,6'-tetranitro- 
2,2'-azoxytoluene 

TETRYL: Methyl-2,4,6-trinitrophenylnitramine 
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